منابع مشابه
On L-ideal-based L-zero-divisor Graphs
In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
متن کاملZero-divisor and Ideal-divisor Graphs of Commutative Rings
For a commutative ring R, we can form the zero-divisor graph Γ(R) or the ideal-divisor graph ΓI(R) with respect to an ideal I of R. We consider the diameters of direct products of zero-divisor and ideal-divisor graphs.
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کامل$C_4$-free zero-divisor graphs
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
متن کاملA generalization of zero-divisor graphs
In this paper, we introduce a family of graphs which is a generalization of zero-divisor graphs and compute an upper-bound for the diameter of such graphs. We also investigate their cycles and cores
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Electronic Journal of Algebra
سال: 2018
ISSN: 1306-6048
DOI: 10.24330/ieja.373650